
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023782
TITLE: A Tool for Creating and Parallelizing Bioinformatics Pipelines

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2007. High
Performance Computing Modernization Program: A Bridge to Future
Defense held 18-21 June 2007 in Pittsburgh, Pennsylvania

To order the complete compilation report, use: ADA488707

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023728 thru ADP023803

UNCLASSIFIED

A Tool for Creating and Parallelizing Bioinformatics Pipelines

Chenggang Yu and Paul A. Wilson
US Army Medical Research and Materiel Command (MRMC), Biotechnology HPC Software

Applications Institute, Telemedicine and Advanced Technology Research Center, Ft. Detrick, AD
cyu@bioanalysis.org

Abstract public databases for genome analysis and annotation. The
huge amount of data and time consuming computations

Bioinformatics pipelines enable life scientists to require effective parallelization for a pipeline to provide

effectively analyze biological data through automated results within a reasonable time. Therefore, considerable

multi-step processes constructed by individual programs programming effort is needed for both integration of

and databases. The huge amount of data and time individual programs into a pipeline and parallelization of

consuming computations require effectively parallelized the pipeline. This has led to the development of software

pipelines to provide results within a reasonable time. To tools to simplify pipeline generation. Examples of such

reduce researchers' programming burden for pipeline tools include Biopipe (Hoon, et al., 2003), Pegasys (Shah,

creation and parallelization, we developed the et al., 2004), BOD (Qiao, et al., 2004), EGene (Durham, et

Bioinformatics Pipeline Generation and Parallelization al., 2005), Pipeline Pilot (Hassan, et al., 2006), and Ergatis

Toolkit (BioGent). A user needs only to create a pipeline (ergatis.sfnet). One computational aspect of these tools is

definition file that describes the data processing sequence the decomposition of the data processing workflow into

and input/output files. A program termed schedpipe in the individual jobs, each consisting of one program (e.g.,

BioGent toolkit takes the definition file and executes the BLAST) and the necessary input data (e.g., FASTA file).

designed procedure. Schedpipe automatically parallelizes This decomposition provides a general, multiple-program

the pipeline execution by performing independent data multiple-data model for parallelization.
The importance of parallelization increases when

processing steps on multiple CPUs, and by decomposing consider en e reserh whe

big datasets into small chunks and processing them in considering genome-wide research, where the large

parallel. Schedpipe controls program execution on amount of data employed necessitates high throughput

multiple CPUs through a simple application programming capabilities. Moreover, parallelization becomes attractive

interface (API) of the Parallel Job Manager (PJM) library, as the number of programs and databases integrated into a

As a part of the BioGent toolkit, PJM was developed to single BIP increases. Many pipeline generation tools

effectively launch and monitor programs on multiple simply submit decomposed individual jobs to a batch

CPUs using a Message Passing Interface (MPI) protocol queuing system for parallel execution. The monitoring of

The PJM API can also be used to parallelize other serial the job status is performed by calling particular commands

programs. A demonstration using PJMforparallelization provided by the queuing system, for example, command
shows 10% to 50% savings in time compared to an 'bjobs', provided by Load Sharing Facility or commandindigenous parallelization through a batch queuing 'qstat', provided by the Sun Grid Engine. Although thissystem. method is easy to implement, it impairs pipeline portability

by tying it to a particular queuing system. Moreover, the
method is not effective in handling dependencies among

1. Introduction individual jobs. Some queuing systems have provided

dependency options in their job submission commands.
Bioinformatics pipelines (BIPs) enable life scientists However, the options are system dependent and are not

to effectively analyze biological data through automated easily handled in pipeline generation tools. When
multi-step processes constructed by individual programs numerous jobs are submitted by a pipeline program to a
and databases. For example, InterProScan (Quevillon, et queuing system, efficiency could be another issue. A large
al., 2005) was designed to use multiple applications to number of dependant jobs may significantly slow down the
search 12 independently-developed proteomics databases job-dispatching process and affect the pipeline as well as
that are incorporated into InterPro (Mulder, et al., 2005). other users' work.
PUMA2 (Maltsev, et al., 2006) incorporates more than 20

0-7695-3088-5/07 $25.00 © 2007 IEEE 417

An alternative to using batch queuing systems for However, this is transparent to the user's programs. A
parallelization is to write parallel code to directly use user's program can call the getidleNodes function to get all
multiple CPUs to run individual jobs. This will reduce the available slave nodes and use the setSimpleJob function to
batch queuing system's burden. Since a user's program assign a job for execution on a specific node. The MNM
will have direct control of multiple CPUs, launching and thread relays the information to the SNM thread on the
monitoring jobs will become faster and easier. This designated node, which then spawns a new job thread (JT)
method is adopted by our BioGent, which reduces the to execute the job. The SNM monitors the job's execution
programming burden for both integration and and constantly reports to the MNM. The user program can
parallelization of multiple bioinformatics programs. A call the getAllDone function to find out which jobs are
pipeline can be generated and automatically parallelized completed. The job thread terminates when the job
through a user-provided pipeline description file. The finishes. The SNM thread continuously spawns threads for
parallelization is based on a MPI protocol that hands out new jobs, reports job state, and tracks CPU status. It
jobs from a main pipeline program to multiple remote terminates when requested to do so by MNM after the
CPUs, and monitors the progress of these jobs. user's program is completed.

2. Methods pipe -

Definition
The BioGent package has two main components: a SchdPp Mas noe

pipeline control program called schedpipe and a binary
library called Parallel Job Manager (PJM). They provide
two tiers of solutions for quick parallelization of BIP
programs.

The first tier doesn't need any programming effort.
Users simply write a text file to describe a pipeline's data
processing flow as multiple independent or dependant
steps. Each step consists of a program and its input and
output. The input can be a chunk of data in a large data file,
or the output of previous processing steps. Similarly, the
output can be the final result of the pipeline, or the
intermediate result that becomes the input to the next
processing step. The way to split a large data file into ---"" --
chunks is set in the pipeline definition file.

When schedpipe is executed, it takes control of Figure 1. Schadpipes control of multiple computer
multiple computer nodes. The program reads in the nodes via PJM
pipeline definition file, creates multiple jobs for data
processing steps and sends each job to a different CPU for 3. Results And Discussion
execution. When one job is done, schedpipe sends the next
job until all jobs are completed. It determines the order of
job execution by dependency. A job is sent out for BioGent's efficiency to manage parallel computation

execution only when all jobs that it depends on are of multiple computer nodes was tested on the Army

finished. Research Laboratory's (ARL's) Powell cluster, which has

The second tier of quick parallelization is through 128 nodes with dual CPUs running Red Hat Linux and

calling the PJM library in user programs. An API for using the Sun Grid Engine batch queuing system. BioGent

parallel job control is provided by the library that uses MPI was first used to create a simple pipeline that had only one

for communication among processes on different computer data processing step and each job generated for that step

nodes. Actually, schedpipe also uses PJM for the control required the same CPU time to complete. Figure 2 shows

of multiple computer nodes. Figure 1 depicts the the speedup of parallel execution of 50,000 one-second

application of PJM in schedpipe. When PJM's function jobs and 50,000 ten-second jobs. The speedup represents

parallel int is called, a multi-nodes manager (MNM) the efficiency of BioGent's job management of multiple

thread is created on the same node (equivalent to a master computer nodes without concern for pragmatic issues, such

node) running the user's programs and single node as competition for shared resources like the network file

manager (SNM) threads are created on each remote node system. The figure indicates that BioGent produces a

(i.e., slave nodes). The MINM communicates with a user nearly ideal speedup curve for ten-second jobs running on

program through shared memory and with SNM using MPI. 220 CPUs, while the curve for one-second jobs drops when
the number exceeds 200 CPUs. This drop in speedup is

418

caused by the CPUs quickly finishing a short job and 250 60%
waiting for their next job. The fraction of waiting time
increases when more CPUs are used to execute very short 200 - .Pr~coa50%

jobs. In practice, jobs for a bioinformatics pipeline require -0- -Ihter2roScaO
longer times to run, while splitting input data into larger --- Pormance ?

0chunks also increases the execution time. Therefore, - 150 mprovemenf 40%

BioGent is efficient as a quick parallelization tool for E
bioinformatics pipelines. In fact, our test on Powell E 30%

p 100-30
showed that BioGent needs only 7 milliseconds to start a E
new job on a remote node, which means that it can manage
as many as 1,580 CPUs to run ten-second jobs with 90% 50 20%
efficiency (measured as the time to run the pipeline in
sequential mode divided by the product of the time to run 0 10%
the pipeline in parallel and the number of CPUs used). 0 10 20 30 40 so 60 70

Number of CPUs
250 - Ideal 10-second Jobs I -second jobs

Figure 3. Comparison of parallelization based on
200 BioGent and a batch queuing system

150 Another application of BioGent was examined by
using schedpipe to create and parallelize a pipeline for

CO 100 protein structure domain predictions using the prediction
of Protein Domain Boundaries Using Neural Networks

50 (PPRODO) program (http://gene.kias.re.kr/-ilee/pprodo/).
The pipeline predicts protein structure domains in four

0 Z. steps: 1) call the Protein Specific Iterated BLAST
0 50 100 150 200 250 (PSIBLAST) program to search the non-redundant (nr)

Number of CPUs database, 2) call the Protein Structure Prediction Server
Figure 2. BioGent's parallelization (PSIPRED) program to predict secondary structure, 3) call

the PSIBLAST program again to search the nr database but
We compared the execution of a pipeline parallelized with different parameters, and 4) perform the PPRODO

with BioGent and a batch queuing system. The software prediction of the domain boundary. Figure 4 shows the
InterProScan contains 12 programs to search 12 different wall-clock time for the parallelized program when
databases for an input protein sequence. The software predicting domains for 5,138 proteins using different
splits input sequences into chunks of sequences and numbers of CPUs on ARL's JVN cluster. The
submits jobs to the batch queuing system for each program parallelization effectively reduces the computation time
to process each chunk of data. All results are assembled in from nearly 20 days on a single CPU to a few hours on
one output file at the end. We wrote a wrapper program -100 CPUs. The speedup curve is showen in the inner
iprscanPJM to perform the same work but using PJM to panel of Figure 4. The inferior speedup compared to the
send jobs directly to available CPUs and monitor their results in Figure 2 is due mainly to the disk input/output on
execution. A dataset of 200 proteins was used in the the shared network file system. If needed, copying data
comparison. The output from both programs was exactly files to the local disk on each node improves performance.
the same except that iprscanPJM runs faster than
InterProScan, as showen in Figure 3. The figure also
shows the performance improvement obtained by using
BioGent. The improvement is measured as the percentage
of time saved by iprscan PJMas compare to InterProScan.
The figure indicates that the parallelization of
InterProScan using BioGent (iprscan PJM) saves 10% to
54% in wall-clock time and the time saving increases with
the number of CPUs used.

419

1000 Su ,Acknowledgements2 Speedup

2W8

I. This work was sponsored by the US Department of

I ,, Defense High Performance Computing Modernization
' 100 0. Program under the High Performance Computing Software

1 \\ Applications Institutes initiative.

References
10 _ _

Durham, A.M. and A.Y. Kashivabara, et al., "EGene: a
------ __configurable pipeline generation system for automated sequence

analysis." Bioinformatics, 21(12), pp. 2812-2813, 2005.

1 Hassan, M. and R.D. Brown, et al., "Cheminformatics analysis
1 65 129 193 257 and learning in a data pipeline environment." Molecular

number of CPUs Diversity, 10(3), pp. 283-299, 2006.

Figure 4. Performance of BioGent for a parallelized Hoon, S. and K.J. Ratnapu, et al., "Biopipe: a flexible framework
PPRODO pipeline for protocol-based bioinformatics analysis." Genome Res., 13(8),

pp. 1904-1915, 2003.

Maltsev, N. and E. Glass, et al., "PUMA2--grid-based

4. Conclusions high-throughput analysis of genomes and metabolic pathways."
Nucleic Acids Res., 34 (Database Issue), D369-37, 2006.

BioGent is a compact, portable package that currently Mulder, N.J. and R. Apweiler, et al., "InterPro, progress and
status in 2005." Nucleic Acids Res., 33 (Database Issue), pp.

contains the schedpipe program and the PJM library. D201-205,2005.
BioGent is independent of third-party programs, database Qiao, L. and J. Zhu, et al., "BOD: a customizable bioinformatics
management systems, and specific batch queuing systems. on demand system accommodating multiple steps and parallel
These attributes allow for ease of installation and use. tasks." Nucleic Acids Res., 32(14), pp. 4175-4181, 2004.

Schedpipe leverages the PJM to create parallelized Quevillon, E. and V. Silventoinen, et al., "InterProScan: protein
BIPs without requiring any extensive computer domains identifier." Nucleic Acids Res., 33 (Web Server issue),
programming expertise from the user. The PJM can also p. W 16-120, 2005.
be employed in user programs to execute jobs on multiple Shah, S.P. and D. He, et al., "Pegasys: software for executing and
CPUs. This methodology is more effective than using a integrating analyses of biological sequences." BMC
batch queuing system when parallelizing bioinformatics Bioinformatics, 5(40), 2004.
pipelines.

Disclaimer

The opinions or assertions contained herein are the
private views of the authors and are not to be construed as
official or as reflecting the views of the US Army or the US
Department of Defense.

420

